Ads
related to: gradient descent calculation example equation in excel formula free
Search results
Results From The WOW.Com Content Network
The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [33]
In optimization, a descent direction is a vector that points towards a local minimum of an objective function :.. Computing by an iterative method, such as line search defines a descent direction at the th iterate to be any such that , <, where , denotes the inner product.
Clearly, =. giving us our final equation for the gradient: = ′ () As noted above, gradient descent tells us that our change for each weight should be proportional to the gradient.
The line-search method first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either ...
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.
See also under Newton algorithm in the section Finding roots of nonlinear equations; Nonlinear conjugate gradient method; Derivative-free methods Coordinate descent — move in one of the coordinate directions Adaptive coordinate descent — adapt coordinate directions to objective function; Random coordinate descent — randomized version
For the case of a function with at most countably many critical points (such as a Morse function) and compact sublevels, as well as with Lipschitz continuous gradient where one uses standard GD with learning rate <1/L (see the section "Stochastic gradient descent"), then convergence is guaranteed, see for example Chapter 12 in Lange (2013 ...