Search results
Results From The WOW.Com Content Network
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [33]
The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...
Costate equations — equation for the "Lagrange multipliers" in Pontryagin's minimum principle; Hamiltonian (control theory) — minimum principle says that this function should be minimized; Types of problems: Linear-quadratic regulator — system dynamics is a linear differential equation, objective is quadratic
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.
Clearly, =. giving us our final equation for the gradient: = ′ () As noted above, gradient descent tells us that our change for each weight should be proportional to the gradient.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
In optimization, a descent direction is a vector that points towards a local minimum of an objective function :.. Computing by an iterative method, such as line search defines a descent direction at the th iterate to be any such that , <, where , denotes the inner product.
By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast. A nice property is that the number of computations is independent of the number of parameters for which you want the gradient. The adjoint method is derived from the dual problem [4] and is used e.g. in the Landweber iteration ...