Search results
Results From The WOW.Com Content Network
A point may be local minimum when it is lower in energy compared to its surrounding only or a global minimum which is the lowest energy point on the entire potential energy surface. Saddle point represents a maximum along only one direction (that of the reaction coordinate) and is a minimum along all other directions. In other words, a saddle ...
In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential (also termed the LJ potential or 12-6 potential; named for John Lennard-Jones) is an intermolecular pair potential. Out of all the intermolecular potentials, the Lennard-Jones potential is probably the one that has been the most extensively studied.
Energy profiles describe potential energy as a function of geometrical variables (PES in any dimension are independent of time and temperature). H+H2 Potential energy surface. We have different relevant elements in the 2-D PES: The 2-D plot shows the minima points where we find reactants, the products and the saddle point or transition state.
Transition state structures can be determined by searching for first-order saddle points on the potential energy surface (PES) of the chemical species of interest. [5] A first-order saddle point is a critical point of index one, that is, a position on the PES corresponding to a minimum in all directions except one.
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
The activated complex is an arrangement of atoms in an arbitrary region near the saddle point of a potential energy surface. [1] The region represents not one defined state, but a range of unstable configurations that a collection of atoms pass through between the reactants and products of a reaction.
The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.
[13] [14] If two locations have different total chemical potentials for a species, some of it may be due to potentials associated with "external" force fields (electric potential energy, gravitational potential energy, etc.), while the rest would be due to "internal" factors (density, temperature, etc.) [13] Therefore, the total chemical ...