When.com Web Search

  1. Ads

    related to: polynomial time reduction example math definition worksheet grade

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial-time reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_reduction

    In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times.

  3. Polynomial-time counting reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_counting...

    A polynomial-time counting reduction is usually used to transform instances of a known-hard problem into instances of another problem that is to be proven hard. It consists of two functions f {\displaystyle f} and g {\displaystyle g} , both of which must be computable in polynomial time .

  4. PTAS reduction - Wikipedia

    en.wikipedia.org/wiki/PTAS_reduction

    In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization ...

  5. Toda's theorem - Wikipedia

    en.wikipedia.org/wiki/Toda's_theorem

    The class P #P consists of all the problems that can be solved in polynomial time if you have access to instantaneous answers to any counting problem in #P (polynomial time relative to a #P oracle). Thus Toda's theorem implies that for any problem in the polynomial hierarchy there is a deterministic polynomial-time Turing reduction to a ...

  6. NEXPTIME - Wikipedia

    en.wikipedia.org/wiki/NEXPTIME

    A decision problem is NEXPTIME-complete if it is in NEXPTIME, and every problem in NEXPTIME has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. Problems that are NEXPTIME-complete might be thought of as the hardest ...

  7. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    In computational complexity theory, a computational problem H is called NP-hard if, for every problem L which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from L to H. That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time.

  8. Many-one reduction - Wikipedia

    en.wikipedia.org/wiki/Many-one_reduction

    A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.

  9. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    In this diagram, problems are reduced from bottom to top. Note that this diagram is misleading as a description of the mathematical relationship between these problems, as there exists a polynomial-time reduction between any two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction has been easiest.

  1. Related searches polynomial time reduction example math definition worksheet grade

    polynomial time reductionpolynomial time turing
    polynomial time reduction algorithm