When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.

  3. Stagnation pressure - Wikipedia

    en.wikipedia.org/wiki/Stagnation_Pressure

    In fluid dynamics, stagnation pressure, also referred to as total pressure, is what the pressure would be if all the kinetic energy of the fluid were to be converted into pressure in a reversable manner. [1]: § 3.2 ; it is defined as the sum of the free-stream static pressure and the free-stream dynamic pressure. [2]

  4. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    q = ⁠ 1 / 2 ⁠ ρv 2 is dynamic pressure, h = z + ⁠ p / ρg ⁠ is the piezometric head or hydraulic head (the sum of the elevation z and the pressure head) [11] [12] and; p 0 = p + q is the stagnation pressure (the sum of the static pressure p and dynamic pressure q). [13] The constant in the Bernoulli equation can be normalized.

  5. Impact pressure - Wikipedia

    en.wikipedia.org/wiki/Impact_pressure

    In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation pressure) and static pressure. [ 1 ] [ 2 ] In aerodynamics notation, this quantity is denoted as q c {\displaystyle q_{c}} or Q c {\displaystyle Q_{c}} .

  6. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    Also, the familiar relationship that stagnation pressure is equal to total pressure does not always hold true. (It is always true in isentropic flow, but the presence of shock waves can cause the flow to depart from isentropic.) As a result, pressure coefficients can be greater than one in compressible flow. [4]

  7. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The concepts of total pressure and dynamic pressure arise from Bernoulli's equation and are significant in the study of all fluid flows. (These two pressures are not pressures in the usual sense—they cannot be measured using an aneroid, Bourdon tube or mercury column.)

  8. Stagnation point - Wikipedia

    en.wikipedia.org/wiki/Stagnation_point

    The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.

  9. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    In irrotational flow, total pressure is the same on all streamlines and is therefore constant throughout the flow. [5] The simplified form of Bernoulli's equation can be summarised in the following memorable word equation: [6] [7] [8] static pressure + dynamic pressure = total pressure.