When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  3. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...

  4. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    As before, , are covariant basis vectors and b i, b j are contravariant basis vectors. Also, let (e 1, e 2, e 3) be a background, fixed, Cartesian basis. A list of orthogonal curvilinear coordinates is given below.

  5. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    If ,, are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (,,), then the gradient of the tensor field is given by (see [3] for a proof.) = From this definition we have the following relations for the gradients of a scalar field ϕ {\displaystyle \phi } , a vector field v , and a second ...

  6. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    Given a basis for T, we can define a basis, called the dual basis for the dual space in a natural way by taking the set of linear functions mentioned above: the projection functions. Each projection function (indexed by ω) produces the number 1 when applied to one of the basis vectors e i {\displaystyle \mathbf {e} _{i}} .

  7. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...

  8. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts.

  9. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...