Search results
Results From The WOW.Com Content Network
Insert: insert a key/value pair with an m-bit key; Delete: remove the key/value pair with a given key; Lookup: find the value associated with a given key; FindNext: find the key/value pair with the smallest key which is greater than a given k; FindPrevious: find the key/value pair with the largest key which is smaller than a given k
The decrease key operation replaces the value of a node with a given value with a lower value, and the increase key operation does the same but with a higher value. This involves finding the node with the given value, changing the value, and then down-heapifying or up-heapifying to restore the heap property. Decrease key can be done as follows:
The purpose of the delete algorithm is to remove the desired entry node from the tree structure. We recursively call the delete algorithm on the appropriate node until no node is found. For each function call, we traverse along, using the index to navigate until we find the node, remove it, and then work back up to the root.
Traversing a tree involves iterating over all nodes in some manner. Because from a given node there is more than one possible next node (it is not a linear data structure), then, assuming sequential computation (not parallel), some nodes must be deferred—stored in some way for later visiting. This is often done via a stack (LIFO) or queue (FIFO).
The parent key moves down to this node to form a 3-node. The child that was originally with the rotated sibling key is now this node's additional child. If the parent is a 2-node and the sibling is also a 2-node, combine all three elements to form a new 4-node and shorten the tree.
In a doubly linked list, one can insert or delete a node in a constant number of operations given only that node's address. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list (in case of the first node) or the link field in the previous node. Some ...
The nodes of the skip list consists of a unique key, a priority, an array of pointers, for each level, to the next nodes and a delete mark. The delete mark marks if the node is about to be deleted by a process. This ensures that other processes can react to the deletion appropriately. insert(e): First, a new node with a key and a priority is ...
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.