Search results
Results From The WOW.Com Content Network
Ellingham diagram for several metals giving the free energy of formation of metal oxides and the corresponding oxygen partial pressure at equilibrium. Ellingham diagrams are a particular graphical form of the principle that the thermodynamic feasibility of a reaction depends on the sign of Δ G , the Gibbs free energy change, which is equal to ...
The second was the 1933 book Modern Thermodynamics by the methods of Willard Gibbs written by E. A. Guggenheim. In this manner, Lewis, Randall, and Guggenheim are considered as the founders of modern chemical thermodynamics because of the major contribution of these two books in unifying the application of thermodynamics to chemistry. [1]
Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. The subject commonly includes calculations of such quantities as heat capacity, heat of combustion, heat of formation, enthalpy, entropy, and free energy.
This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only I − 1 {\displaystyle I-1} of I {\displaystyle I} components have independent values for chemical potential and Gibbs' phase rule follows.
By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.
For thermodynamics, a natural process is a transfer between systems that increases the sum of their entropies, and is irreversible. [2] Natural processes may occur spontaneously upon the removal of a constraint, or upon some other thermodynamic operation , or may be triggered in a metastable or unstable system, as for example in the ...