When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantitative models of the action potential - Wikipedia

    en.wikipedia.org/wiki/Quantitative_models_of_the...

    Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.

  3. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    In order to arrive at the complete solution for a propagated action potential, one must write the current term I on the left-hand side of the first differential equation in terms of V, so that the equation becomes an equation for voltage alone.

  4. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells.

  5. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact experimental technique used for acquiring the signal.

  6. Rheobase - Wikipedia

    en.wikipedia.org/wiki/Rheobase

    Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. [1]

  7. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    Graded potentials that make the membrane potential less negative or more positive, thus making the postsynaptic cell more likely to have an action potential, are called excitatory postsynaptic potentials (EPSPs). [4] Depolarizing local potentials sum together, and if the voltage reaches the threshold potential, an action potential occurs in ...

  8. Goldman–Hodgkin–Katz flux equation - Wikipedia

    en.wikipedia.org/wiki/Goldman–Hodgkin–Katz...

    The Goldman–Hodgkin–Katz flux equation (or GHK flux equation or GHK current density equation) describes the ionic flux across a cell membrane as a function of the transmembrane potential and the concentrations of the ion inside and outside of the cell.

  9. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells ), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.