When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In computer science, join-based tree algorithms are a class of algorithms for self-balancing binary search trees. This framework aims at designing highly-parallelized algorithms for various balanced binary search trees. The algorithmic framework is based on a single operation join. [1]

  3. Pairing heap - Wikipedia

    en.wikipedia.org/wiki/Pairing_heap

    delete-min: remove the root and do repeated melds of its subtrees until one tree remains. Various merging strategies are employed. The analysis of pairing heaps' time complexity was initially inspired by that of splay trees. [1] The amortized time per delete-min is O(log n), and the operations find-min, meld, and insert run in O(1) time. [3]

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  5. Binomial heap - Wikipedia

    en.wikipedia.org/wiki/Binomial_heap

    Because each binomial tree in a binomial heap corresponds to a bit in the binary representation of its size, there is an analogy between the merging of two heaps and the binary addition of the sizes of the two heaps, from right-to-left. Whenever a carry occurs during addition, this corresponds to a merging of two binomial trees during the merge.

  6. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]

  7. Merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Merge_algorithm

    Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers.

  8. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.

  9. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist. Then, as long as x is not the root of the tree and has a larger priority number than its parent z , perform a tree rotation that reverses the parent-child relation between x and z .