Search results
Results From The WOW.Com Content Network
Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.
In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.
The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f ( v ) to each vertex v , a graph G is f -choosable (or f -list-colorable ) if it has a list coloring no matter how one assigns a list of f ( v ...
From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]
The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
A claw is a tree with one internal vertex and three leaves, or equivalently the complete bipartite graph K 1,3. A claw-free graph is a graph that does not have an induced subgraph that is a claw. clique A clique is a set of mutually adjacent vertices (or the complete subgraph induced by that set). Sometimes a clique is defined as a maximal set ...
It is also useful to know that k-cohesive graphs (or k-components) are always a subgraph of a k-core, although a k-core is not always k-cohesive. A k -core is simply a subgraph in which all nodes have at least k neighbors but it need not even be connected.
The matching polynomial of a graph G with n vertices is related to that of its complement by a pair of (equivalent) formulas. One of them is a simple combinatorial identity due to Zaslavsky (1981). The other is an integral identity due to Godsil (1981). There is a similar relation for a subgraph G of K m,n and its complement in K m,n. This ...