Search results
Results From The WOW.Com Content Network
An ant starts to crawl along a taut rubber rope 1 km long at a speed of 1 cm per second (relative to the rubber it is crawling on). At the same time, the rope starts to stretch uniformly at a constant rate of 1 km per second, so that after 1 second it is 2 km long, after 2 seconds it is 3 km long, etc.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
To help compare different orders of magnitude, this section lists lengths between 10 −3 m and 10 −2 m (1 mm and 1 cm). 1.0 mm – 1/1,000 of a meter; 1.0 mm – 0.03937 inches or 5/127 (exactly) 1.0 mm – side of a square of area 1 mm²; 1.0 mm – diameter of a pinhead; 1.5 mm – average length of a flea [27]
The substrate concentration midway between these two limiting cases is denoted by K M. Thus, K M is the substrate concentration at which the reaction velocity is half of the maximum velocity. [2] The two important properties of enzyme kinetics are how easily the enzyme can be saturated with a substrate, and the maximum rate it can achieve.
The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...
u is again the drift velocity of the electrons, in m⋅s −1; m is the molecular mass of the metal, in kg; σ is the electric conductivity of the medium at the temperature considered, in S/m. ΔV is the voltage applied across the conductor, in V; ρ is the density (mass per unit volume) of the conductor, in kg⋅m −3; e is the elementary ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Characteristics may fail to cover part of the domain of the PDE. This is called a rarefaction, and indicates the solution typically exists only in a weak, i.e. integral equation, sense. The direction of the characteristic lines indicates the flow of values through the solution, as the example above demonstrates.