When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electromotive force - Wikipedia

    en.wikipedia.org/wiki/Electromotive_force

    The electromotive force generated by motion is often referred to as motional emf. When the change in flux linkage arises from a change in the magnetic field around the stationary conductor, the emf is dynamically induced. The electromotive force generated by a time-varying magnetic field is often referred to as transformer emf.

  3. Weston cell - Wikipedia

    en.wikipedia.org/wiki/Weston_cell

    The original design was a saturated cadmium cell producing a 1.018 638 V reference and had the advantage of having a lower temperature coefficient than the previously used Clark cell. [1] One of the great advantages of the Weston normal cell is its small change of electromotive force with change of temperature.

  4. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The Seebeck coefficients generally vary as function of temperature and depend strongly on the composition of the conductor. For ordinary materials at room temperature, the Seebeck coefficient may range in value from −100 μV/K to +1,000 μV/K (see Seebeck coefficient article for more information).

  5. Temperature coefficient - Wikipedia

    en.wikipedia.org/wiki/Temperature_coefficient

    A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT , the temperature coefficient α is defined by the following equation:

  6. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    Cell diagram. Pt(s) | H 2 (1 atm) | H + (1 M) || Cu 2+ (1 M) | Cu(s) E° cell = E° red (cathode) – E° red (anode) At standard temperature, pressure and concentration conditions, the cell's emf (measured by a multimeter) is 0.34 V. By definition, the electrode potential for the SHE is zero. Thus, the Cu is the cathode and the SHE is the ...

  7. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    The effective temperature coefficient varies with temperature and purity level of the material. The 20 °C value is only an approximation when used at other temperatures. For example, the coefficient becomes lower at higher temperatures for copper, and the value 0.00427 is commonly specified at 0 °C. [53]

  8. Resistance thermometer - Wikipedia

    en.wikipedia.org/wiki/Resistance_thermometer

    They also can only be used over a limited temperature range due to the different expansion rates of the substrate and resistive deposited giving a "strain gauge" effect that can be seen in the resistive temperature coefficient. These elements work with temperatures to 300 °C (572 °F) without further packaging, but can operate up to 600 °C ...

  9. Thermogalvanic cell - Wikipedia

    en.wikipedia.org/wiki/Thermogalvanic_cell

    In electrochemistry, a thermogalvanic cell is a kind of galvanic cell in which heat is employed to provide electrical power directly. [1] [2] These cells are electrochemical cells in which the two electrodes are deliberately maintained at different temperatures. This temperature difference generates a potential difference between the electrodes.