Search results
Results From The WOW.Com Content Network
Delayed evaluation solves this problem, and can be implemented in C++ by letting operator+ return an object of an auxiliary type, say VecSum, that represents the unevaluated sum of two Vecs, or a vector with a VecSum, etc. Larger expressions then effectively build expression trees that are evaluated only when assigned to an actual Vec variable ...
Minkowski sums act linearly on the perimeter of two-dimensional convex bodies: the perimeter of the sum equals the sum of perimeters. Additionally, if K {\textstyle K} is (the interior of) a curve of constant width , then the Minkowski sum of K {\textstyle K} and of its 180° rotation is a disk.
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...
C++ programmers expect the latter on every major implementation of C++; it includes aggregate types (vectors, lists, maps, sets, queues, stacks, arrays, tuples), algorithms (find, for_each, binary_search, random_shuffle, etc.), input/output facilities (iostream, for reading from and writing to the console and files), filesystem library ...
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix.
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .