When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .

  3. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:

  4. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  5. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory. The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind. A two-parameter generalization of (Eq.

  7. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  8. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    More accurately, the general orthogonality principle states the following: Given a closed subspace of estimators within a Hilbert space and an element in , an element ^ achieves minimum MSE among all elements in if and only if ⁡ {(^)} = for all .

  9. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero. Then the sequence ( P n ) ∞ n =0 of orthogonal polynomials is defined by the relations deg ⁡ P n = n , P m , P n = 0 for m ≠ n . {\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text ...