When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is. where M is the applied torques and I is the inertia matrix.

  3. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The dynamics of an interconnected system of rigid bodies, Bi, j = 1, ..., M, is formulated by isolating each rigid body and introducing the interaction forces. The resultant of the external and interaction forces on each body, yields the force-torque equations. Newton's formulation yields 6 M equations that define the dynamics of a system of M ...

  4. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  5. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  6. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    Hooke's law: the force is proportional to the extension Bourdon tubes are based on Hooke's law. The force created by gas pressure inside the coiled metal tube above unwinds it by an amount proportional to the pressure. The balance wheel at the core of many mechanical clocks and watches depends on Hooke's law. Since the torque generated by the ...

  7. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1][2][3] early in the 20th century. [4][5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high- frequency ...

  8. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    The large weights can be rotated to the other side of the torsion beam (w, w), causing the beam to rotate in the opposite direction. The Cavendish experiment , performed in 1797–1798 by English scientist Henry Cavendish , was the first experiment to measure the force of gravity between masses in the laboratory [ 1 ] and the first to yield ...

  9. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  1. Related searches calculate the torque on beam force extreme motion based on current state

    beam torsion formulaequation for torque free precessions
    torsion constant for beam