When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant- temperature (isothermal ), constant- entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.

  3. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    Thermodynamics. In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility[1] or, if the temperature is held constant, the isothermal compressibility[2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.

  4. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  5. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    At high P-T, the pressure for the ideal gas is calculated by the force divided by the area, while the pressure for the solid is calculated from bulk modulus (K, or B) and volume at room temperature, or from Eq (1) at high P-T. A pressure gauge's bulk modulus is known, and its thermal equation of state is well known.

  6. Material properties (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Material_properties...

    The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are: where P is pressure, V is volume, T is temperature, S is entropy, and N is the number of ...

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem). In the case of Maxwell relations the function considered is a thermodynamic potential ...

  8. Tait equation - Wikipedia

    en.wikipedia.org/wiki/Tait_equation

    Tait equation. In fluid mechanics, the Tait equation is an equation of state, used to relate liquid density to hydrostatic pressure. The equation was originally published by Peter Guthrie Tait in 1888 in the form [1] where is the hydrostatic pressure in addition to the atmospheric one, is the volume at atmospheric pressure, is the volume under ...

  9. Grüneisen parameter - Wikipedia

    en.wikipedia.org/wiki/Grüneisen_parameter

    Some formulations for the Grüneisen parameter include: = = = = = (⁡ ⁡) where V is volume, and are the principal (i.e. per-mass) heat capacities at constant pressure and volume, E is energy, S is entropy, α is the volume thermal expansion coefficient, and are the adiabatic and isothermal bulk moduli, is the speed of sound in the medium ...