Search results
Results From The WOW.Com Content Network
In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...
The air's motion is affected by the pressure differences, but the existence of the pressure differences depends on the air's motion. The relationship is thus a mutual, or reciprocal, interaction: Air flow changes speed or direction in response to pressure differences, and the pressure differences are sustained by the air's resistance to ...
The Magnus effect is a phenomenon that occurs when a spinning object is moving through a fluid or gas (air). A lift force acts on the spinning object and its path may be deflected in a manner not present when it is not spinning. The strength and direction of the Magnus effect is dependent on the speed and direction of the rotation of the object ...
The Coandă effect (/ ˈ k w ɑː n d ə / or / ˈ k w æ-/) is the tendency of a fluid jet to stay attached to a surface of any form. [1] Merriam-Webster describes it as "the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower ...
The basis of a carburetor used in many reciprocating engines is a throat in the air flow to create a region of low pressure to draw fuel into the carburetor and mix it thoroughly with the incoming air. The low pressure in the throat can be explained by Bernoulli's principle, where air in the throat is moving at its fastest speed and therefore ...
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
Where air is flowing in a laminar manner it has less resistance than when it is flowing in a turbulent manner. If flow becomes turbulent, and the pressure difference is increased to maintain flow, this response itself increases resistance. This means that a large increase in pressure difference is required to maintain flow if it becomes turbulent.
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.