When.com Web Search

  1. Ads

    related to: jacobian method examples geometry problems and answers

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  3. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    In mathematics, the Jacobian conjecture is a famous unsolved problem concerning polynomials in several variables. It states that if a polynomial function from an n -dimensional space to itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial inverse.

  4. Generalized Jacobian - Wikipedia

    en.wikipedia.org/wiki/Generalized_Jacobian

    In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to study ramified coverings of a curve, with abelian Galois group .

  5. Jacobi's theorem (geometry) - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_theorem_(geometry)

    Adjacent colored angles are equal in measure. The point N is the Jacobi point for triangle ABC and these angles.. In plane geometry, a Jacobi point is a point in the Euclidean plane determined by a triangle ABC and a triple of angles α, β, γ.

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  7. Carl Gustav Jacob Jacobi - Wikipedia

    en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

    Theta functions are of great importance in mathematical physics because of their role in the inverse problem for periodic and quasi-periodic flows. The equations of motion are integrable in terms of Jacobi's elliptic functions in the well-known cases of the pendulum , the Euler top , the symmetric Lagrange top in a gravitational field , and the ...