When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    For example, a sphere of radius r has Gaussian curvature ⁠ 1 / r 2 ⁠ everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus .

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    where the second equality follows from the Gauss–Jacobi equation and the fourth from Gauss's derivative formula in the orthogonal coordinates (r,θ). Gauss's formula shows that the curvature at a point can be calculated as the limit of angle excess α + β + γ − π over area for successively smaller geodesic triangles near the point ...

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Gaussian curvature is an intrinsic property of the surface, meaning it does not depend on the particular embedding of the surface; intuitively, this means that ants living on the surface could determine the Gaussian curvature. For example, an ant living on a sphere could measure the sum of the interior angles of a triangle and determine that it ...

  5. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.

  6. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map provides a mapping from every point on a curve or a surface to a corresponding point on a unit sphere. In this example, the curvature of a 2D-surface is mapped onto a 1D unit circle. In differential geometry , the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the ...

  7. Pseudosphere - Wikipedia

    en.wikipedia.org/wiki/Pseudosphere

    In particular, for the tractroid the Gauss–Codazzi equations are the sine-Gordon equation applied to the static soliton solution, so the Gauss–Codazzi equations are satisfied. In these coordinates the first and second fundamental forms are written in a way that makes clear the Gaussian curvature is −1 for any solution of the sine-Gordon ...

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.

  9. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...