When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The conjugate of a product of two quaternions is the product of the conjugates in the reverse order. That is, if p and q are quaternions, then (pq) ∗ = q ∗ p ∗, not p ∗ q ∗. The conjugation of a quaternion, in stark contrast to the complex setting, can be expressed with multiplication and addition of quaternions:

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  4. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    The product of a quaternion with its conjugate is its common norm. [63] The operation of taking the common norm of a quaternion is represented with the letter N. By definition the common norm is the product of a quaternion with its conjugate. It can be proven [64] [65] that common norm is equal to the square of the tensor of a quaternion ...

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.

  6. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.

  7. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Quaternion variable theory differs in some respects from complex variable theory. For example: The complex conjugate mapping of the complex plane is a central tool but requires the introduction of a non-arithmetic, non-analytic operation. Indeed, conjugation changes the orientation of plane figures, something that arithmetic functions do not ...

  8. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  9. Rotor (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotor_(mathematics)

    A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. [1] The term originated with William Kingdon Clifford, [2] in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). [3]