Search results
Results From The WOW.Com Content Network
Carlyle circle of the quadratic equation x 2 − sx + p = 0. Given the quadratic equation x 2 − sx + p = 0. the circle in the coordinate plane having the line segment joining the points A(0, 1) and B(s, p) as a diameter is called the Carlyle circle of the quadratic equation. [1] [2] [3]
Some instances of the smallest bounding circle. The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
For n trees, QMD is calculated using the quadratic mean formula: where is the diameter at breast height of the i th tree. Compared to the arithmetic mean, QMD assigns greater weight to larger trees – QMD is always greater than or equal to arithmetic mean for a given set of trees.
where A 1 and A 2 are the centers of the two circles and r 1 and r 2 are their radii. The power of a point arises in the special case that one of the radii is zero. If the two circles are orthogonal, the Darboux product vanishes. If the two circles intersect, then their Darboux product is
Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector. Tangent line to a circle from a given point draw semicircle centered on the midpoint between the center of the circle and the given point. Power of a point and the harmonic mean [clarification needed]