When.com Web Search

  1. Ad

    related to: gaussian processes tutorial video

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    14.3 Video tutorials. Toggle the table of contents. ... a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), ...

  3. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/.../Neural_network_Gaussian_process

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  4. Large width limits of neural networks - Wikipedia

    en.wikipedia.org/wiki/Large_width_limits_of...

    Video: as the width of the network increases, the output distribution simplifies, ultimately converging to a Neural network Gaussian process in the infinite width limit. Artificial neural networks are a class of models used in machine learning, and inspired by biological neural networks. They are the core component of modern deep learning ...

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.

  6. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    Neural Tangents is a free and open-source Python library used for computing and doing inference with the infinite width NTK and neural network Gaussian process (NNGP) corresponding to various common ANN architectures. [26] In addition, there exists a scikit-learn compatible implementation of the infinite width NTK for Gaussian processes called ...

  7. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    The Ornstein–Uhlenbeck process is an example of a Gaussian process that has a bounded variance and admits a stationary probability distribution, in contrast to the Wiener process; the difference between the two is in their "drift" term. For the Wiener process the drift term is constant, whereas for the Ornstein–Uhlenbeck process it is ...

  8. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  9. Gaussian random field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_random_field

    A one-dimensional GRF is also called a Gaussian process. An important special case of a GRF is the Gaussian free field . With regard to applications of GRFs, the initial conditions of physical cosmology generated by quantum mechanical fluctuations during cosmic inflation are thought to be a GRF with a nearly scale invariant spectrum.