When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Alea GPU, [19] created by QuantAlea, [20] introduces native GPU computing capabilities for the Microsoft .NET languages F# [21] and C#. Alea GPU also provides a simplified GPU programming model based on GPU parallel-for and parallel aggregate using delegates and automatic memory management. [22]

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  4. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  5. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  6. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  7. PlaidML - Wikipedia

    en.wikipedia.org/wiki/PlaidML

    PlaidML is a portable tensor compiler.Tensor compilers bridge the gap between the universal mathematical descriptions of deep learning operations, such as convolution, and the platform and chip-specific code needed to perform those operations with good performance.

  8. TensorFloat-32 - Wikipedia

    en.wikipedia.org/wiki/TensorFloat-32

    The binary format is: 1 sign bit; 8 exponent bits; 10 fraction bits (also called mantissa, or precision bits) The total 19 bits fits within a double word (32 bits), and while it lacks precision compared with a normal 32 bit IEEE 754 floating point number, provides much faster computation, up to 8 times on a A100 (compared to a V100 using FP32).

  9. Flux (machine-learning framework) - Wikipedia

    en.wikipedia.org/wiki/Flux_(machine-learning...

    For example, GPU support is implemented transparently by CuArrays.jl. [8] This is in contrast to some other machine learning frameworks which are implemented in other languages with Julia bindings, such as TensorFlow.jl (the unofficial wrapper, now deprecated), and thus are more limited by the functionality present in the underlying ...