Search results
Results From The WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
The hyperbolic bound [7] is a tighter sufficient condition for schedulability than the one presented by Liu and Layland: = (+), where U i is the CPU utilization for each task. It is the tightest upper bound that can be found using only the individual task utilization factors.
On the other hand, / is a positive infinitesimal, since by the definition of least upper bound there must be an infinitesimal between / and , and if / < / then is not infinitesimal. But 1 / ( 4 n ) < c / 2 {\displaystyle 1/(4n)<c/2} , so c / 2 {\displaystyle c/2} is not infinitesimal, and this is a contradiction.
Research in proof complexity is predominantly concerned with proving proof-length lower and upper bounds in various propositional proof systems. For example, among the major challenges of proof complexity is showing that the Frege system, the usual propositional calculus, does not admit polynomial-size proofs of all tautologies. Here the size ...
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For each subset A of a partially ordered set S, let A u denote the set of upper bounds of A; that is, an element x of S belongs to A u whenever x is greater than or equal to every element in A. Symmetrically, let A l denote the set of lower bounds of A, the elements that are less than or equal to every element in A.
A sup of X is a least upper bound on X, namely an upper bound on X that is less or equal to every upper bound on X. Dually an inf of X is a greatest lower bound on X. The sup of x and y always exists in the underlying poset of a Boolean algebra, being x∨y, and likewise their inf exists, namely x∧y. The empty sup is 0 (the bottom element ...