When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The geometric interpretation of curl as rotation corresponds to identifying bivectors (2-vectors) in 3 dimensions with the special orthogonal Lie algebra of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and ...

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.

  4. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In physical terms, the divergence of a vector field is the extent to which the vector field flux behaves like a source or a sink at a given point. It is a local measure of its "outgoingness" – the extent to which there are more of the field vectors exiting from an infinitesimal region of space than entering it.

  5. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  6. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    Physical interpretation The ... Now, vorticity is defined as the curl of the flow velocity vector; taking the curl of momentum equation yields the desired equation ...

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The line integrals and curls are analogous to quantities in classical fluid dynamics: the circulation of a fluid is the line integral of the fluid's flow velocity field around a closed loop, and the vorticity of the fluid is the curl of the velocity field.

  8. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    Circulation can be related to curl of a vector field V and, more specifically, to vorticity if the field is a fluid velocity field, =.. By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = =

  9. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made precise by the diffusion equation. This interpretation of the Laplacian is also explained by the following fact about averages.