Search results
Results From The WOW.Com Content Network
To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.
Integration by parts is often used in harmonic analysis, particularly Fourier analysis, to show that quickly oscillating integrals with sufficiently smooth integrands decay quickly. The most common example of this is its use in showing that the decay of function's Fourier transform depends on the smoothness of that function, as described below.
In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case
An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.
Adaptive quadrature is a numerical integration method in which the integral of a function is approximated using static quadrature rules on adaptively refined subintervals of the region of integration. Generally, adaptive algorithms are just as efficient and effective as traditional algorithms for "well behaved" integrands, but are also ...
The term Lebesgue integration can mean either the general theory of integration of a function with respect to a general measure, as introduced by Lebesgue, or the specific case of integration of a function defined on a sub-domain of the real line with respect to the Lebesgue measure.
The area under that curve, from a to b, is what we want to figure out. This area can be described as the set of all points (x, y) on the graph that follow these rules: a ≤ x ≤ b (the x-coordinate is between a and b) and 0 < y < f(x) (the y-coordinate is between 0 and the height of the curve f(x)).
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]