When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    The limiting reagent (or limiting reactant or limiting agent) in a chemical reaction is a reactant that is totally consumed when the chemical reaction is completed. [ 1 ] [ 2 ] The amount of product formed is limited by this reagent, since the reaction cannot continue without it.

  3. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation. The molar ratio allows for conversion between moles of one substance and moles of another. For example, in the reaction 2 CH 3 OH + 3 O 2 → 2 CO 2 + 4 H 2 O. the amount of water that will be produced by the combustion of 0.27 moles ...

  4. Carothers equation - Wikipedia

    en.wikipedia.org/wiki/Carothers_equation

    The simplest case refers to the formation of a strictly linear polymer by the reaction (usually by condensation) of two monomers in equimolar quantities. An example is the synthesis of nylon-6,6 whose formula is [−NH−(CH 2) 6 −NH−CO−(CH 2) 4 −CO−] n from one mole of hexamethylenediamine, H 2 N(CH 2) 6 NH 2, and one mole of adipic acid, HOOC−(CH 2) 4 −COOH.

  5. Extent of reaction - Wikipedia

    en.wikipedia.org/wiki/Extent_of_reaction

    [1] The change in the extent of reaction is then defined as [2] [3] = where denotes the number of moles of the reactant or product and is the stoichiometric number [4] of the reactant or product. Although less common, we see from this expression that since the stoichiometric number can either be considered to be dimensionless or to have units ...

  6. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...

  7. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    The theoretical molar yield is 2.0 mol (the molar amount of the limiting compound, acetic acid). The molar yield of the product is calculated from its weight (132 g ÷ 88 g/mol = 1.5 mol). The % yield is calculated from the actual molar yield and the theoretical molar yield (1.5 mol ÷ 2.0 mol × 100% = 75%). [citation needed]

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0. But the overall rate of reaction is the rate of formation of final product (here CO 2), so that r = r 2 ≈ r 1. That is, the overall rate is determined by the rate of the first step, and (almost) all molecules that react at the first step continue to the fast second step.

  1. Related searches limiting reagent calculations moles and concentration equation formula 1

    limiting reagent equationlimiting reagent equivalent
    limiting reagentlimiting reagent wikipedia