When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  4. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Rather than storing the structure of the code tree explicitly, canonical Huffman codes are ordered in such a way that it suffices to only store the lengths of ...

  5. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps:

  6. Shannon coding - Wikipedia

    en.wikipedia.org/wiki/Shannon_coding

    In the table below is an example of creating a code scheme for symbols a 1 to a 6. The value of l i gives the number of bits used to represent the symbol a i . The last column is the bit code of each symbol.

  7. File:Huffman coding example.svg - Wikipedia

    en.wikipedia.org/.../File:Huffman_coding_example.svg

    The standard way to represent a signal made of 4 symbols is by using 2 bits/symbol, but the entropy of the source is 1.73 bits/symbol. If this Huffman code is used to represent the signal, then the entropy is lowered to 1.83 bits/symbol; it is still far from the theoretical limit because the probabilities of the symbols are different from negative powers of two.

  8. bzip2 - Wikipedia

    en.wikipedia.org/wiki/Bzip2

    Rather than unary encoding, effectively this is an extreme form of a Huffman tree, where each code has half the probability of the previous code. Huffman-code bit lengths are required to reconstruct each of the used canonical Huffman tables. Each bit length is stored as an encoded difference against the previous-code bit length.

  9. Asymmetric numeral systems - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_numeral_systems

    If symbols are assigned in ranges of lengths being powers of 2, we would get Huffman coding. For example, a->0, b->100, c->101, d->11 prefix code would be obtained for tANS with "aaaabcdd" symbol assignment. Example of generation of tANS tables for m = 3 size alphabet and L = 16 states, then applying them for stream decoding.