When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The binomial distribution is the basis for the binomial test of statistical significance. [1] The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the ...

  3. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    As the sample size n grows sufficiently large, the distribution of ^ will be closely approximated by a normal distribution. [1] Using this and the Wald method for the binomial distribution , yields a confidence interval, with Z representing the standard Z-score for the desired confidence level (e.g., 1.96 for a 95% confidence interval), in the ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Geometric distribution, for binomial-type observations but where the quantity of interest is the number of failures before the first success; a special case of the negative binomial distribution; Related to sampling schemes over a finite population:

  6. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    A binomial test is a statistical hypothesis test used to determine whether the proportion of successes in a sample differs from an expected proportion in a binomial distribution. It is useful for situations when there are two possible outcomes (e.g., success/failure, yes/no, heads/tails), i.e., where repeated experiments produce binary data .

  7. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The image on the right, made with CumFreq, illustrates an example of fitting the log-normal distribution to ranked annually maximum one-day rainfalls showing also the 90% confidence belt based on the binomial distribution. [79] The rainfall data are represented by plotting positions as part of a cumulative frequency analysis.

  9. Multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Multinomial_distribution

    The binomial distribution generalizes this to the number of heads from performing n independent flips (Bernoulli trials) of the same coin. The multinomial distribution models the outcome of n experiments, where the outcome of each trial has a categorical distribution, such as rolling a k-sided die n times. Let k be a fixed finite number.