Search results
Results From The WOW.Com Content Network
Virus nanotechnology is the use of viruses as a source of nanoparticles for biomedical purposes. Viruses are made up of a genome and a capsid; and some viruses are enveloped. Most virus capsids measure between 20-500 nm in diameter. Because of their nanometer size dimensions, viruses have been considered as naturally occurring nanoparticles.
How vectors work to transfer genetic material. Gene therapy utilizes the delivery of DNA into cells, which can be accomplished by several methods, summarized below. The two major classes of methods are those that use recombinant viruses (sometimes called biological nanoparticles or viral vectors) and those that use naked DNA or DNA complexes (non-viral methods).
Attachments on nanoparticles make them more biocompatible. A nanoparticle–biomolecule conjugate is a nanoparticle with biomolecules attached to its surface. Nanoparticles are minuscule particles, typically measured in nanometers (nm), that are used in nanobiotechnology to explore the functions of biomolecules. Properties of the ultrafine ...
In addition, virus-like nanoparticles are also being researched. These structures allow vaccines to self-assemble without encapsulating viral RNA, making them non-infectious and incapable of replication. These virus-like nanoparticles are designed to elicit a strong immune response by using a self-assembled layer of virus capsid proteins. [66] [61]
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency.
Chitosan proves to be effective against bacteria, viruses, and fungi, however, it is more effective against fungi and viruses than bacteria. The positively charged chitosan nanoparticles interact with the negatively charged cell membrane, which causes an increase in membrane permeability, and eventually the intracellular components leak and ...
The metal-based nanoparticles used for biomedical prospectives are extremely enticing in various applications due to their distinctive physicochemical characteristics, allowing them to influence cellular processes at the biological level. The fact that metal-based nanoparticles have high surface-to-volume ratios makes them reactive or catalytic.
The gold nanoparticles increase delivery efficiency by conjugating with a cargo DNA that anneals to the AMO using complementarity. The cargo DNA is attached to the surface of the nanoparticle. [ 6 ] Because many variations of DNA and RNA are unstable in in vivo conditions, carriers, such as nanoparticles, are necessary to protect from ...