Search results
Results From The WOW.Com Content Network
In predictive analytics, a table of confusion (sometimes also called a confusion matrix) is a table with two rows and two columns that reports the number of true positives, false negatives, false positives, and true negatives. This allows more detailed analysis than simply observing the proportion of correct classifications (accuracy).
The Posit Package Manager (formerly RStudio Package Manager) is a similar tool produced by the developers of RStudio which, in addition to CRAN snapshots, includes an archive of R packages from Bioconductor and Python packages from the Python Package Index. [26]
The ROSE compiler framework, developed at Lawrence Livermore National Laboratory (LLNL), is an open-source software compiler infrastructure to generate source-to-source analyzers and translators for multiple source languages including C (C89, C99, Unified Parallel C (UPC)), C++ (C++98, C++11), Fortran (77, 95, 2003), OpenMP, Java, Python, and PHP.
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...
An implementation of several whitening procedures in R, including ZCA-whitening and PCA whitening but also CCA whitening, is available in the "whitening" R package [7] published on CRAN. The R package "pfica" [8] allows the computation of high-dimensional whitening representations using basis function systems (B-splines, Fourier basis, etc.).
With the release of version 0.3.0 in April 2016 [4] the use in production and research environments became more widespread. The package was reviewed several months later on the R blog The Beginner Programmer as "R provides a simple and very user friendly package named rnn for working with recurrent neural networks.", [5] which further increased usage.
The tidyverse is a collection of open source packages for the R programming language introduced by Hadley Wickham [1] and his team that "share an underlying design philosophy, grammar, and data structures" of tidy data. [2] Characteristic features of tidyverse packages include extensive use of non-standard evaluation and encouraging piping. [3 ...