Search results
Results From The WOW.Com Content Network
The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells ), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.
The action potential generated by the SA node passes down the electrical conduction system of the heart, and depolarizes the other potential pacemaker cells (AV node) to initiate action potentials before these other cells have had a chance to generate their own spontaneous action potential, thus they contract and propagate electrical impulses ...
An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells.
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.
Date/Time Thumbnail Dimensions User Comment; current: 18:04, 14 July 2009: 354 × 251 (60 KB): Diberri == Summary == Pacemaker cell action potential diagram. == Licensing == {{GFDL-self-with-disclaimers}} ==Revision history from Wikipedia== * delete all current 13:32, June 17, 2006 354×251 (60 KB) Ackoz (talk | contribs | block) (Diagram of the action
Image of a myocardial action potential. Effective refractory period in green. In electrocardiography, during a cardiac cycle, once an action potential is initiated, there is a period of time that a new action potential cannot be initiated.
In electrocardiography, the ventricular cardiomyocyte membrane potential is about −90 mV at rest, [1] which is close to the potassium reversal potential. When an action potential is generated, the membrane potential rises above this level in five distinct phases. [1] Phase 4: Resting membrane potential remains stable at ≈−90 mV. [1]
Cardiac excitation-contraction coupling (Cardiac EC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. [1] This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input.