Search results
Results From The WOW.Com Content Network
Sentiment analysis (also known as opinion mining or emotion AI) is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.
Emotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context.
Emotion recognition in conversation (ERC) is a sub-field of emotion recognition, that focuses on mining human emotions from conversations or dialogues having two or more interlocutors. [1] The datasets in this field are usually derived from social platforms that allow free and plenty of samples, often containing multimodal data (i.e., some ...
Vietnamese Social Media Emotion Corpus (UIT-VSMEC) Users’ Facebook Comments. Comments 6,927 Text Classification 1997 [21] Nguyen et al. Vietnamese Open-domain Complaint Detection dataset (ViOCD) Customer product reviews Comments 5,485 Text Classification 2021 [22] Nguyen et al. ViHOS: Hate Speech Spans Detection for Vietnamese Social Media Texts
The process of speech/text affect detection requires the creation of a reliable database, knowledge base, or vector space model, [21] broad enough to fit every need for its application, as well as the selection of a successful classifier which will allow for quick and accurate emotion identification.
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
In 2007, the Emotion Markup Language Incubator Group (EmotionML XG) was set up as a follow-up to the Emotion Incubator Group, "to propose a specification draft for an Emotion Markup Language, to document it in a way accessible to non-experts, and to illustrate its use in conjunction with a number of existing markups."
The emotion annotation can be done in discrete emotion labels or on a continuous scale. Most of the databases are usually based on the basic emotions theory (by Paul Ekman) which assumes the existence of six discrete basic emotions (anger, fear, disgust, surprise, joy, sadness). However, some databases include the emotion tagging in continuous ...