Search results
Results From The WOW.Com Content Network
Dynamic cubic splines with JSXGraph; Lectures on the theory and practice of spline interpolation; Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in ...
The following JavaScript implementation takes a data set and produces a monotone cubic spline interpolant function: /* * Monotone cubic spline interpolation * Usage example listed at bottom; this is a fully-functional package.
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.
The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Cubic spline definition [ edit ]
A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural means that the second derivatives of the spline polynomials are zero at the endpoints of the interval of interpolation.
Note that similar generalizations can be made for other types of spline interpolations, including Hermite splines. In regards to efficiency, the general formula can in fact be computed as a composition of successive C I N T {\displaystyle \mathrm {CINT} } -type operations for any type of tensor product splines, as explained in the tricubic ...
Using this formula to evaluate () at one of the nodes will result in the indeterminate /; computer implementations must replace such results by () =. Each Lagrange basis polynomial can also be written in barycentric form:
The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...