When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    Because those nodes may also be less than half full, to re-establish the normal B-tree rules, combine such nodes with their (guaranteed full) left siblings and divide the keys to produce two nodes at least half full. The only node which lacks a full left sibling is the root, which is permitted to be less than half full.

  3. B+ tree - Wikipedia

    en.wikipedia.org/wiki/B+_tree

    A B+ tree consists of a root, internal nodes and leaves. [1] The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves.

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.

  5. Search tree - Wikipedia

    en.wikipedia.org/wiki/Search_tree

    An (a,b)-tree is a search tree where all of its leaves are the same depth. Each node has at least a children and at most b children, while the root has at least 2 children and at most b children. a and b can be decided with the following formula: [2] (+)

  6. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    Let T be a node of an ordered tree, and let B denote T's image in the corresponding binary tree. Then B's left child represents T's first child, while the B's right child represents T's next sibling. For example, the ordered tree on the left and the binary tree on the right correspond: An example of converting an n-ary tree to a binary tree

  7. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;

  8. 2–3 tree - Wikipedia

    en.wikipedia.org/wiki/2–3_tree

    In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.

  9. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.