When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Upper half-plane - Wikipedia

    en.wikipedia.org/wiki/Upper_half-plane

    The uniformization theorem for surfaces states that the upper half-plane is the universal covering space of surfaces with constant negative Gaussian curvature. The closed upper half-plane is the union of the upper half-plane and the real axis. It is the closure of the upper half-plane.

  3. Half-space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Half-space_(geometry)

    A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0

  4. Modular group - Wikipedia

    en.wikipedia.org/wiki/Modular_group

    Two points in the upper half-plane give isomorphic elliptic curves if and only if they are related by a transformation in the modular group. Thus, the quotient of the upper half-plane by the action of the modular group is the so-called moduli space of elliptic curves: a space whose points describe isomorphism classes of elliptic curves. This is ...

  5. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  6. Hardy space - Wikipedia

    en.wikipedia.org/wiki/Hardy_space

    In complex analysis, the Hardy spaces (or Hardy classes) are spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz ( Riesz 1923 ), who named them after G. H. Hardy , because of the paper ( Hardy 1915 ).

  7. Modular form - Wikipedia

    en.wikipedia.org/wiki/Modular_form

    A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic : they are holomorphic on the complement of a set of isolated points, which are poles of the function.

  8. Modular curve - Wikipedia

    en.wikipedia.org/wiki/Modular_curve

    The modular group SL(2, Z) acts on the upper half-plane by fractional linear transformations.The analytic definition of a modular curve involves a choice of a congruence subgroup Γ of SL(2, Z), i.e. a subgroup containing the principal congruence subgroup of level N for some positive integer N, which is defined to be

  9. Half-disk topology - Wikipedia

    en.wikipedia.org/wiki/Half-disk_topology

    In mathematics, and particularly general topology, the half-disk topology is an example of a topology given to the set , given by all points (,) in the plane such that . [1] The set X {\displaystyle X} can be termed the closed upper half plane.