When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.

  3. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    The force is along the straight line joining them. If the two charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive. If is the distance (in meters) between two charges, then the force between two point charges and is: = | |, where ε 0 = 8.854 187 8188 ...

  4. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor. [1] A static electric charge can be created whenever two surfaces contact and/or slide against each other and then separate.

  5. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    A single bond between two atoms corresponds to the sharing of one pair of electrons. The Hydrogen (H) atom has one valence electron. Two Hydrogen atoms can then form a molecule, held together by the shared pair of electrons. Each H atom now has the noble gas electron configuration of helium (He).

  6. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Coulomb's law quantifies the electrostatic force between two particles by asserting that the force is proportional to the product of their charges, and inversely proportional to the square of the distance between them. The charge of an antiparticle equals that of the corresponding particle, but with opposite sign. The electric charge of a ...

  7. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy of a system of three charges should not be confused with the electrostatic potential energy of Q 1 due to two charges Q 2 and Q 3, because the latter doesn't include the electrostatic potential energy of the system of the two charges Q 2 and Q 3. The electrostatic potential energy stored in the system of three ...

  8. Electric-field screening - Wikipedia

    en.wikipedia.org/wiki/Electric-field_screening

    In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles (with charges q 1 and q 2) interact through the Coulomb force as = | | ^, where the vector r is the relative position between the charges. This interaction complicates the theoretical treatment of the fluid.

  9. Electrostatic induction - Wikipedia

    en.wikipedia.org/wiki/Electrostatic_induction

    The movement of charges is caused by the force exerted on them by the electric field of the external charged object, by Coulomb's law. As the charges in the metal object continue to separate, the resulting positive and negative regions create their own electric field, which opposes the field of the external charge. [3]