Search results
Results From The WOW.Com Content Network
Tryptophan ball and stick model spinning. Tryptophan (symbol Trp or W) [3] is an α-amino acid that is used in the biosynthesis of proteins.Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent.
Tryptophan synthase or tryptophan synthetase is an enzyme (EC 4.2.1.20) that catalyzes the final two steps in the biosynthesis of tryptophan. [1] [2] It is commonly found in Eubacteria, [3] Archaebacteria, [4] Protista, [5] Fungi, [6] and Plantae. [7] However, it is absent from Animalia. [8] It is typically found as an α2β2 tetramer.
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
Protein is a nutrient needed by the human body for growth and maintenance. Aside from water, proteins are the most abundant kind of molecules in the body. Protein can be found in all cells of the body and is the major structural component of all cells in the body, especially muscle. This also includes body organs, hair and skin.
Aromatic amino acids often serve as the precursors to important biochemicals. Histidine is the precursor to histamine. Tryptophan is the precursor to 5-hydroxytryptophan and then serotonin, tryptamine, auxin, kynurenines, and melatonin. [6]
Serotonin and tryptophan have been found in chocolate with varying cocoa contents. The highest serotonin content (2.93 μg/g) was found in chocolate with 85% cocoa, and the highest tryptophan content (13.27–13.34 μg/g) was found in 70–85% cocoa. The intermediate in the synthesis from tryptophan to serotonin, 5-hydroxytryptophan, was not found.
For premium support please call: 800-290-4726 more ways to reach us
Used in proteins and as a storage for ammonia, it is the most abundant amino acid in the body. Arginine: R Arg Functionally similar to lysine. Serine: S Ser Serine and threonine have a short group ended with a hydroxyl group. Its hydrogen is easy to remove, so serine and threonine often act as hydrogen donors in enzymes.