Ads
related to: polar heads and nonpolar tails worksheet
Search results
Results From The WOW.Com Content Network
Surfactants are composed of a polar head group that is hydrophilic and a nonpolar tail group that is hydrophobic. The head groups can be anionic, cationic, zwitterionic, or nonionic. The tail group can be a hydrocarbon, fluorocarbon, or a siloxane. Extensive variation in the surfactant’s solution and interfacial properties is allowed through ...
Surfactant molecules have either one tail or two; those with two tails are said to be double-chained. [4] Surfactant classification according to the composition of their head: non-ionic, anionic, cationic, amphoteric. Most commonly, surfactants are classified according to polar head group. A non-ionic surfactant has no charged groups in its ...
Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ('nonpolar'). By forming a double layer with the polar ends pointing outwards and the nonpolar ends pointing inwards membrane lipids can form a 'lipid bilayer' which keeps the watery interior of the cell separate from the watery ...
In an aqueous system, the polar heads of lipids align towards the polar, aqueous environment, while the hydrophobic tails minimize their contact with water and tend to cluster together, forming a vesicle; depending on the concentration of the lipid, this biophysical interaction may result in the formation of micelles, liposomes, or lipid bilayers.
Phospholipids [1] are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. [2]
In a non-polar solvent, it is the exposure of the hydrophilic head groups to the surrounding solvent that is energetically unfavourable, giving rise to a water-in-oil system. In this case, the hydrophilic groups are sequestered in the micelle core and the hydrophobic groups extend away from the center.
This characteristic is due to its hydrophilic head, composed of the polar phosphatidylcholine group, and its hydrophobic tails, formed by two nonpolar palmitic acid (C 16) chains. This trait allows DPPC to easily and spontaneously form micelles, monolayers, bilayers and liposomes when it is in contact with a polar solvent.
Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic substances do not dissolve. This type of mixture is called a colloid.