Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
A serial relation R is an endorelation on a set U. As stated by Russell, , where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest.
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) R : A → B in this category is a relation between the sets A and B, so R ⊆ A × B. The composition of two relations R: A → B and S: B → C is given by (a, c) ∈ S o R ⇔ for some b ∈ B, (a, b) ∈ R and (b, c) ∈ ...
The set of the equivalence classes is sometimes called the quotient set or the quotient space of by , and is denoted by /. When the set S {\displaystyle S} has some structure (such as a group operation or a topology ) and the equivalence relation ∼ {\displaystyle \,\sim \,} is compatible with this structure, the quotient set often inherits a ...
A set with precisely two elements is also called a 2-set or (rarely) a binary set. An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing.