Ads
related to: gauss curvature of sphere worksheet 1 solutions grade
Search results
Results From The WOW.Com Content Network
The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...
A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.
If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.
However the Gauss–Bonnet theorem ensures that the topology of a surface places constraints on the complete Riemannian metrics which may be imposed on a surface so the study of metric spaces of non-positive curvature is of vital interest in both the mathematical fields of geometry and topology.
This immersion cannot be because a small oscillating sphere would provide a large lower bound for the principal curvatures, and therefore for the Gauss curvature of the immersed sphere, but on the other hand if the immersion is this has to be equal to 1 everywhere, the Gauss curvature of the standard , by Gauss' Theorema Egregium.
In full generality, the Minkowski problem asks for necessary and sufficient conditions on a non-negative Borel measure on the unit sphere S n-1 to be the surface area measure of a convex body in . Here the surface area measure S K of a convex body K is the pushforward of the (n-1) -dimensional Hausdorff measure restricted to the boundary of K ...