When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    It is good practice to find the smallest values of p and q which provide an acceptable fit to the data. For a pure AR model, the Yule-Walker equations may be used to provide a fit. ARMA outputs are used primarily to forecast (predict), and not to infer causation as in other areas of econometrics and regression methods such as OLS and 2SLS.

  3. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  4. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  5. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators ^ and ^ vary from sample to sample for the specified sample size.

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A trend line could simply be drawn by eye through a set of data points, but more properly their position and slope is calculated using statistical techniques like linear regression. Trend lines typically are straight lines, although some variations use higher degree polynomials depending on the degree of curvature desired in the line.

  7. Trend analysis - Wikipedia

    en.wikipedia.org/wiki/Trend_analysis

    Trend analysis is the widespread practice of collecting information and attempting to spot a pattern. In some fields of study, the term has more formally defined meanings. [1] [2] [3]

  8. Line fitting - Wikipedia

    en.wikipedia.org/wiki/Line_fitting

    Line fitting is the process of constructing a straight line that has the best fit to a series of data points. Several methods exist, considering: Vertical distance: Simple linear regression; Resistance to outliers: Robust simple linear regression

  9. Cointegration - Wikipedia

    en.wikipedia.org/wiki/Cointegration

    Cointegration is a crucial concept in time series analysis, particularly when dealing with variables that exhibit trends, such as macroeconomic data. In an influential paper, [ 1 ] Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic ...