Search results
Results From The WOW.Com Content Network
Smoothing (estimation) and smoothing (convolution) despite being labelled with the same name in English language, can mean totally different mathematical procedures. The requirements of problems they solve are different. These concepts are distinguished by the context (signal processing versus estimation of stochastic processes).
When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in discrete time. [54] [55] If the index set is some interval of the real line, then time is said to be continuous.
Indeed, this randomization principle is known to be a simple and effective way to obtain algorithms with almost certain good performance uniformly across many data sets, for many sorts of problems. Stochastic optimization methods of this kind include: simulated annealing by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi (1983) [10] quantum annealing
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty.A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions.
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
Stochastic computing performs this operation using probability instead of arithmetic. Specifically, suppose that there are two random, independent bit streams called stochastic number s (i.e. Bernoulli processes ), where the probability of a 1 in the first stream is p {\displaystyle p} , and the probability in the second stream is q ...
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values.
Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .