When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range ⁠ π / 2 ⁠ < θ ≤ π. To do this we let t = θ − ⁠ π / 2 ⁠, t will now be in the range 0 < t ≤ π/2. We can then make use of squared versions of some basic shift identities ...

  5. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.

  6. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  8. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is ⁡ (). We write this as:

  9. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.