When.com Web Search

  1. Ads

    related to: bi vectors in geometry ppt slides template

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    The non-zero vectors in Cl n (R) or R n are associated with points in the projective space so vectors that differ only by a scale factor, so their exterior product is zero, map to the same point. Non-zero simple bivectors in ⋀ 2 R n represent lines in RP n −1 , with bivectors differing only by a (positive or negative) scale factor ...

  3. Category:Geometry templates - Wikipedia

    en.wikipedia.org/wiki/Category:Geometry_templates

    If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:Geometry templates]] to the <includeonly> section at the bottom of that page.

  4. Template:Geometry - Wikipedia

    en.wikipedia.org/wiki/Template:Geometry

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  5. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  6. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The derivatives that appear in Maxwell's equations are vectors and electromagnetic fields are represented by the Faraday bivector F. This formulation is as general as that of differential forms for manifolds with a metric tensor, as then these are naturally identified with r-forms and there are corresponding operations. Maxwell's equations ...

  7. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Felix Klein saw screw theory as an application of elliptic geometry and his Erlangen Program. [11] He also worked out elliptic geometry, and a fresh view of Euclidean geometry, with the Cayley–Klein metric. The use of a symmetric matrix for a von Staudt conic and metric, applied to screws, has been described by Harvey Lipkin. [12]