Search results
Results From The WOW.Com Content Network
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
The rejection of a vector from a plane is its orthogonal projection on a straight line which is orthogonal to that plane. Both are vectors. The first is parallel to the plane, the second is orthogonal. For a given vector and plane, the sum of projection and rejection is equal to the original vector.
For example, the y-axis is normal to the curve = at the origin. However, normal may also refer to the magnitude of a vector. In particular, a set is called orthonormal (orthogonal plus normal) if it is an orthogonal set of unit vectors. As a result, use of the term normal to mean "orthogonal" is often avoided.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
The orthogonality principle is most commonly used in the setting of linear estimation. [1] In this context, let x be an unknown random vector which is to be estimated based on the observation vector y. One wishes to construct a linear estimator ^ = + for some matrix H and vector c.
Let u = (x 1, y 1) and v = (x 2, y 2). Consider the restrictions on x 1, x 2, y 1, y 2 required to make u and v form an orthonormal pair. From the orthogonality restriction, u • v = 0. From the unit length restriction on u, ||u|| = 1. From the unit length restriction on v, ||v|| = 1. Expanding these terms gives 3 equations: