When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1⁄4 turn or 90 degrees). The side opposite to the right angle is called the hypotenuse (side in the figure). The sides adjacent to the right angle are called ...

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  5. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Geometric mean theorem. In Euclidean geometry, the right triangle altitude theorem or geometric mean theorem is a relation between the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states that the geometric mean of those two segments equals the altitude.

  6. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    In the case of right triangles, the triangle inequality specializes to the statement that the hypotenuse is greater than either of the two sides and less than their sum. [9] The second part of this theorem is already established above for any side of any triangle. The first part is established using the lower figure.

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    v. t. e. Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  8. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    A Pythagorean prime is a prime number of the form . Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares. Equivalently, by the Pythagorean theorem, they are the odd prime numbers for which is the length of the hypotenuse of a right triangle with ...

  9. Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_Pythagorean_theorem

    In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem[1] or the upside down Pythagorean theorem[2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse.