Ad
related to: inductive load power factor equation calculator excel formula practice exercises
Search results
Results From The WOW.Com Content Network
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. . Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):
This equation also is a direct consequence of the linearity of Maxwell's equations. It is helpful to associate changing electric currents with a build-up or decrease of magnetic field energy. The corresponding energy transfer requires or generates a voltage.
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...
To avoid magnetic inrush, only for transformers with an air gap in the core, the inductive load needs to be synchronously connected near a supply voltage peak, in contrast with the zero-voltage switching, which is desirable to minimize sharp-edged current transients with resistive loads such as high-power heaters.
An inductive load consists of an iron-core reactive element which, when used in conjunction with a resistive load bank, creates a lagging power factor load. Typically, the inductive load will be rated at a numeric value 75% that of the corresponding resistive load such that when applied together a resultant 0.8 power factor load is provided.
Three power factor scenarios are shown, where (a) the line serves an inductive load so the current lags receiving end voltage, (b) the line serves a completely real load so the current and receiving end voltage are in phase, and (c) the line serves a capacitive load so the current leads receiving end voltage.
The power factor of induction motors varies with load, typically from about 0.85 or 0.90 at full load to as low as about 0.20 at no-load, [39] due to stator and rotor leakage and magnetizing reactances. [45]