Search results
Results From The WOW.Com Content Network
Stability, luminosity, and lifespan are all factors in stellar habitability. Humans know of only one star that hosts life, the G-class Sun, a star with an abundance of heavy elements and low variability in brightness. The Solar System is also unlike many stellar systems in that it only contains one star (see Habitability of binary star systems).
Pages Related to Stellar properties, Pages using the word stellar in a physics context. Stellar aberration; Stellar age estimation; Stellar archaeology
A B-type main-sequence star (B V) is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. [1] B-type stars are extremely luminous and blue.
The revised Yerkes Atlas system [7] listed a dense grid of A-type dwarf spectral standard stars, but not all of these have survived to this day as standards. The "anchor points" and "dagger standards" of the MK spectral classification system among the A-type main-sequence dwarf stars, i.e. those standard stars that have remained unchanged over years and can be considered to define the system ...
A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K (5,000 and 5,700 °C; 9,100 and 10,000 °F). Like other main ...
A K-type main-sequence star, also referred to as a K-type dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars ("red dwarfs") and yellow/white G-type main-sequence stars .
It has a stellar classification of K0 III, [4] although some sources list a classification of G9.5 III [15] indicating that it lies along the dividing line separating G-type from K-type stars. The luminosity class 'III' means that it is a giant, a star that has consumed the hydrogen at its core and evolved away from the main sequence.
For example, the initial mass of a star is the primary factor of determining its colour, luminosity, radius, radiation spectrum, and quantity of materials and energy it emitted into interstellar space during its lifetime. [1] At low masses, the IMF sets the Milky Way Galaxy mass budget and the number of substellar objects that form.